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The volume of fluid (VOF) method, which uses an interface tracking algorithm
for the simulation of the two-phase flow, is coupled with the “two-fluid” model,
which is based on time and space averaged equations and cannot track the interface
explicitly. The idea of the present work is to use the VOF method in the parts of the
computational domain where the grid density allows surface tracking. In the parts of
the domain where the flow is too dispersed to be described by the interface tracking
algorithms, the two-fluid model is used. The equations of the two-fluid model are less
accurate than the VOF model due to the empirical closures required in the averaged
equations. However, in the case of the sufficiently dispersed flow, the two-fluid model
results are still much closer to the real world than the results of the VOF method,
which do not have any physical meaning when the grid becomes too coarse. Each
model in the present work uses a separate set of equations suitable for description
of two-dimensional, incompressible, viscous two-phase flow. Similar discretization
techniques are used for both sets of equations and solved with the same numerical
method. Coupling of both models is achieved via the volume fraction of one of the
fluids, which is used in both models. A special criterion for the transition between
the models is derived from the interface reconstruction function in the VOF method.
An idealized vortical flow and the Rayleigh—Taylor instability are used as tests of
the coupling. In both cases the time development causes mixing of the fluids and
dispersion of the interface that is beyond the capabilities of the model based on the
VOF method. Therefore the two-fluid model gradually replaces the interface tracking
model. In the final stages of the Rayleigh—Taylor instability, when both fluids are
approaching their final positions and the tractable interface appears again, the two-
fluid model is gradually replaced by the VOF methodg) 2001 Academic Press
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1. INTRODUCTION

Two-phase flow plays an important role in many natural and industrial processes s
as combustion, petroleum refining, chemical engineering, nuclear technology, and ot
[27, 47]. It is a very complex phenomenon, which appears in various forms with differe
characteristics. The numerical simulation is an important tool for the investigation of t
two-phase flow and it makes a significant contribution to the understanding of the tv
phase flow characteristics and vice versa—the variance and complexity of two-phase
stimulate the development of many different mathematical models and numerical tools
its simulation. The mathematical models and the computational methods for the partic
types of two-phase flows are usually adapted to the physical characteristic of the phenon
and therefore differ significantly.

The interface tracking methods, which are used for the simulations of the transie
with moving discontinuous interfaces [24] are the basic two-phase flow models from 1
standpoint of the Navier—Stokes equations. Since they are based on the fundamental Nz
Stokes equations they explicitly track the interface. During the calculation they keep
interface sharp and enable the accurate location of the particular fluid at any time dul
the transient. Such an approach allows direct simulations of the two-phase flow phenon
like the phase change and surface tension [2, 29].

There are many types of interface tracking methods, which can be classified accordir
their approach used to track the interface. The volume of fluid (VOF) [23] method and le
set method [36, 40], which use the static grid to locate the fluids, are very popular for
simulation the two-fluid flow problems with significant changes of the interface topolog
They experienced several modifications ([19, 34, 36, 38]), and were applied to a variety t
fluid flow problems. There are also several algorithms, which use Lagrangian approache
track the interface. The marker-and-cell method (MAC) [21] was one of the first interfa
tracking methods. Besides the static Eulerian grid it uses massless particles scattered
the fluids, which are transported in a Lagrangian manner to locate a particular fluid. T
front tracking methods [17, 45] offer the most explicit way for the interface description.
these methods the massless points are located only on the interface and are linked tog
in the mesh, which moves together with the fluids. In the fully Lagrangian algorithms [2
the mesh moves together with the fluids and no special tool for interface tracking is neet
Due to the complex mesh handling [1] they are suitable to simulate simple two-fluid flc
problems without significant topological changes of the interface.

The novelties and improvements of the interface tracking algorithms are usually dem
strated on a small number of typical two-phase flow transients, such as the Rayleigh—Te
instability [14, 18, 35], shape and stability of a rising bubble [3, 8, 43], or a falling dro
[20]. The improvements of these methods and computer hardware development have
abled some complex simulations, such as the three-dimensional simulation of sev
rising bubbles [5], merging and fragmentation of drops [31], and precise calculation of |
pinching pendant drop [19]. However, the limitation of the interface tracking simulations
obvious: none of the simulations mentioned above crossed the point where the discrete
could not follow the dispersion of the interface. In a dispersed flow, where chunks of 1
particular fluid are smaller than the grid cells, the surface tracking is not possible and
results of the interface tracking methods lose their physical meaning. A phenomenon, w
an interface tracking algorithm numerically disperses, and/or merges the fluid chunks,
drives the transient, is called “numerical surface tension.” This was first noticed by Glin
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et al. during the simulation of the chaotic stage of the Rayleigh—Taylor instability wit
the front tracking method [18] and was examined in the vortical flow test with the VO
method by Rider and Kothe [38]. Denser nodalization is usually suggested as a solutio
this problem [13].

Since most two-phase flows of practical importance are too dispersed to be resol
with the interface tracking algorithms, it is clear that different approaches are necess
Modeling of the applicable multi-phase flow was thus based mainly on the averaged Nav
Stokes equations in the past three decades. Despite the weakness common to all aver
schemes—a lack of knowledge of the closure relations—two-phase flow modeling will r
be possible without the averaged models in the foreseen future.

The so-called two-fluid models, based on time averaging and described in the textb
of Ishii [26], were among the first averaged models of two-phase flow. Later spatial a
statistical averaging were used by different authors [15, 42], resulting in similar two-flu
model equations. A typical two-fluid model for a general two-phase flow, used, for exal
ple, in nuclear thermal-hydraulics [6], is one-dimensional and consists of the continu
momentum, and energy balance equation for each phase. Results of the simulations a
ten unreliable, due to the large uncertainty of the interfacial mass, momentum, and en
exchange terms. These uncertainties are caused by different flow regimes, which can a
in the two-phase flows.

More accurate two-fluid models are available for a dispersed flow [9], especially wh
the dispersed phase represents solid particles and the interfacial area is exactly kn
Bubbly or droplet two-phase flow are more complicated than the solid particle flows, sir
the interfacial surface is changing. However, two-fluid models for such flows are still mu
more accurate than the general two-fluid models [6] that attempt to describe all two-ph
flow regimes.

Thiswork presents the coupling of both models, which retains the accuracy of the interf
tracking schemes for a simple two-phase flow and eliminates the need for the special clo
relations of the two-fluid models for the same simple flow. When the flow is dispersed a
the interface tracking becomes impossible, a relatively accurate two-fluid model is availa
Among many different well-established interface tracking algorithms the VOF method
assumed to be the most convenient, because the color function in the VOF model
volume fraction in the two-fluid model actually represent the same variable. This varial
represents the basis of the proposed coupling mechanism.

Two tests are used to analyze the coupling. The first is the idealized problem of
vortex flow by Rider and Kothe [38], where the coupling algorithm is tested by advectit
and vorticity. The second is a physical problem of the Rayleigh—Taylor instability in a clos
tank. This problem was examined numerically and experimentally many times in the p
and it serves as a benchmark test for the interface tracking algorithms. In the present v
the whole phenomenon is simulated until the fluids completely exchange their positions
the system becomes stable. Jacgmin [28] simulated a similar case with a phase-field m
however, in his particular case of Rayleigh—Taylor instability the characteristic length sc
of the dispersed chunks was larger than the grid size so the method did not fail. In
case, the dispersion is far beyond the capabilities of the interface tracking method and |
methods are required to simulate the transient.

In the next two sections the main characteristics of the applied VOF model and |
two-fluid model are pointed out. The fourth section is dedicated to the description
the coupling, and the fifth section describes the switch mechanism between the VOF
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the two-fluid model. The sixth section reports the results of the idealized vortex flow and
Rayleigh—Taylor instability simulated with the coupled model and the last section gives
conclusions.

2. AMODEL BASED ON THE VOF METHOD

A model based on the VOF method is suitable for describing two-phase problems, wt
the characteristic length of the interface shape is larger than the grid size. This mc
describes the two-phase flow by the Navier—Stokes system consisting of a continuity
momentum balance equation. For the two-dimensional system of incompressible visc
fluids these continuity and momentum equations are usually used [37, 43]

V.i=0, 1)

ot . . -
p¥+p(u~V)u=pg—Vp+V-(uD), 2

wherel = (u(x, y, t), v(x, y, 1)) is a two-dimensional velocity field) = p(x, y, t) is a
pressure field) = (Vi + Vi'")/2 is a viscous stress tensor, ani$ a gravity. Both fluids
are treated with the same equations, where the depsityy, t) and the viscosity. (X, y, t)

are functions of space and time denoting either the first or the second fluid. The suri
tension force does not play an important role in the process of model coupling; therefol
is omitted in the present work. If there is a need for the surface tension modeling it can
included without any essential change to the model coupling.

2.1. The Interface Tracking Algorithm

The interface tracking in the VOF method is based on the color function, which mat
the fluids in the following way [37]

1 ifplace(x,y) is occupied by the fluid
f(x,y) = : : : : 3)
0 if place(x, y) is occupied by the fluid.
The functionf is evaluated on the discrete grid as a volume average
1
=y [ foeyav. @
[} v
[N}

whereV, ; is the volume of the celli, j). The interface tracking algorithm consists of the
interface reconstruction and an advection algorithm.

The interface reconstruction algorithm is not unique. There are several algorithms v
different accuracy and complexity. The LVIRA algorithm [37] is used for the reconstructic
of the interface in our work. This algorithm makes a linear approximation of the interface
putting a line segment in each multi-fluid cell, i.e., in each cellwhich has®; < 1. The
approximate interface orientation in the agllj) is determined from the volume fractions in
a 3 x 3 block of neighboring cells. The orientation of each interface segment is determir
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FIG. 1. Interface reconstruction with the LVIRA algorithm.

by the normal vecton, which is calculated by the minimization of the function

1 1
G =Y > (fikju — Fojp @2 ®)

|=—1k=-1

An example of this algorithm is shown in Fig. 1 where fluid 1 is signed with the dark sha
and the fluid 2 with the white one. The valuesfof ;11 are known volume fractions of the
fluid 1ina3x 3 block of cells. The values of,,, ; ,, (71) are the volume fractions (hatched
area) due to the line with the normial(dotted line in Fig. 1), which divides the block on
two parts and conserves the volume fraction in the center cell of the blockf; j;e= fifj .
The LVIRA algorithm puts the interface segment between the boundaries of thg, gell
(thick black line in Fig. 1).

The second step in the interface tracking is the advection algorithm for the evolution
the volume fractiond in time. The volume fractiorf follows the equation [23, 37]

af .
S rv-@n=o. (6)

Equation (6) reflects the fact that in an incompressible fluid the conservation of mas:
equivalent to the conservation of volume and hence the conservatién Die unsplit
advection algorithm [37, 38] is used to calculate the temporal evolution of the volur
fraction field f from Eq. (6).

The volume fraction function is used for the calculation of the fluid properties in the gr
points, where both fluids are present:

pij = fijpr+ Q= fijp2 )
fijus + L= fi o (8)

i,

The essence of the VOF model is to keep the interface sharp, which allows accurate loce
of the particular fluid and direct simulation of the eventual surface phenomena (surf:
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tension, phase-change, etc.). The accuracy of the model depends on the applied num
scheme and on grid density. The model is not capable of simulating the phenomena:
the scale smaller than the grid size.

3. THE TWO-FLUID MODEL

The two-fluid models are suitable for the two-phase problems, where the length sc
of the interface shape is smaller than the grid size. The basic property of those moc
that is, a consequence of the temporal and/or spatial averaging, is that each fluid
continuum occupies the whole domain and therefore the interface is not calculated explic
Information lost by the averaging is replaced by more or less accurate closure relations
for the interfacial transfer of mass, momentum, and energy provided empirically mos
from experiments. This approach is more suitable for simulations of the dispersed flo
however, appropriate correlations also allow simulations of two-phase flow phenom
where the characteristic length of the interface is large compared to the grid size. The' t
fluid models are usually designed for the simulations of the compressible two-phase f
[44], but in some cases, where the fluid velocities are small compared to the sound sp
the incompressible model is used [32]. Since the development of the coupling procec
between the two-fluid model and the interface tracking model is the main goal of this wo
a very simple incompressible two-fluid model is chosen.

3.1. Two-Fluid Model Equations

The continuity and momentum equations for the system of incompressible viscous fi.
used in the present model are [32]
oty

E-I—V'(fkﬁk):O, 9

ol . - _ .
kakT: + frok (V) Uk = fepd — fiVp + Cr (b — U2) + &V - (ukDy).  (10)

The two-fluid system is described with two pairs of equations, (9) and (10) kwth for

fluid 1 andk = 2 for fluid 2. Both fluids are regarded as two mixed phases that share the se
space and pressure and interact with the exchange of momentum (mass and energy tr:
are nottakeninto accountin Egs. (9) and (10)). Atany location there is a pair of velocities
volume fractionsf; and f,. Both fluids share space in proportion to their volume fraction
which satisfy the equatiori; + f, = 1. The divergence free condition for the two-fluid
model is provided by summation of Eq. (9) foe= 1 and Eq. (9) fok = 2 for both fluids

V(fily) + V(falz) = 0. (11)

Since the volume fraction in the two-fluid model has a meaning similar to the color functi
(3) in the VOF model, the same symbblis used. The momentum Eq. (10) for=1
and Eq. (10) fok = 2 are coupled with the third term on the right-hand side which is th
inter-phase momentum exchange term due to a friction at the interface of the fluids. -
interfacial friction depends on the flow regime of the two-phase flow. The coeffidi@ants
andC, are given by [26]

1 .
Ci=-C= gCdrcdi |V1 — Do, (12)
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wherep. is a density of the continuous fluid, is a volumetric interfacial area, awmglis an
empirical coefficient, which depends on the local Reynolds number and the flow regime

A simplified interface friction coefficient, which is used in the present work is taken frol
the work of Mat and llegbusi [32]

Ci=—-Cr=cypfify, (13)

wherecy = 20 is an empirical constant and= f10; + f,0, is the mixture density. The
correlation (13) is applicable for laminar flows and small velocities and does not inclu
the interfacial area variabg. More advanced two-fluid models use special correlations c
even a special transport equation &134, 41], since it is a very important parameter for
the calculation of all interface exchange terms. These modeds f@n be included without
any essential change to the coupling model.

The two-fluid model is not so severely limited with the nodalization density as is tt
interface tracking model. Due to the averaged equations and corresponding closure |
tionships it can handle the phenomena on the smaller scale than the grid size. Of co
the numerical scheme and nodalization density still affect the accuracy of the two-fl
model; however, the dominant contribution to the accuracy is the quality of the empiric
correlations [44]. The main source of the uncertainty of the two-fluid models comes frc
the uncertainty of the correlations used to describe different flow regimes. Especially h
uncertainties are usually experienced during transitions between different flow regimes

4. COUPLED MODEL

The advantage of coupling the VOF and the two-fluid model is that some flow regimes w
clear phase separation are not needed in the two-fluid model since they can be desc
more accurately by the VOF model. Because correlations are needed only for dispel
flows, coupling of these models improves the accuracy. On the other hand the couj
model with the inclusion of the two-fluid model prevents the non-physical interpretation
the dispersed flow by the VOF method.

The coupled model is designed to simulate the computational domain containing
area where the fluids are mixed and calculated with the two-fluid model (lighter gray al
in Fig. 2) and the area where the fluids are separated and calculated with the VOF m
(black and white areas in Fig. 2). During the simulation the two-fluid model area m
change into the VOF area and vice versa. From the physical point of view the coupli
is not problematic since both models use the same parameters to describe fluid flow.
advantage of the VOF model at coupling is that it uses the color function for tracking t
interface, which has the same meaning as a volume fraction variable in the two-fluid mo
The difference between the models is treatment of the fluid velocities. All the boundar
of the cell, which is in the two-fluid model domain, have two velocities obtained fror
Eqg. (10)—one for each fluid. The remaining boundaries have only one velocity defin
When the model of the cell is changed, the velocities are redefined in order to conserve
volume flux. When the VOF model is changed to the two-fluid model, the velocities st

the samai} ™' = g5""™9 = GVOF, But when the two-fluid model is changed to the VOF

model the velocity is calculated &¥°F = ;"™ 4 (1 — fy)ahve™d,
Both sets of equations ((1), (2) and (10), (11)) were discretized and solved with the s¢

numerical scheme due to the compatibility of model coupling. The numerical technig
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FIG. 2. Coupling of two-fluid and VOF area.

following the basic ideas of Rudman [39] was used to solve the time dependent incc
pressible Navier—Stokes equations on a staggered grid. The first-order algorithm for
time integration based on the projection method is used. The lower accuracy of the ten
ral integration is partially compensated for with the shorter time step, which did not exce
0.1 fraction of the CFL time step. The Helmholtz equation for the pressure correctior
solved with the biconjugate gradient method [16]. The second-order central differencin
used for spatial discretization of the convection terms with a proper amount of the upw
discretization, which reduces the numerical oscillations but does not reduce the accu
order of the scheme.

The difference between the models is also the treatment of the volume fraction advec
Egs. (6) and (9). Equations (6) and (9) are in the same discretization form

firfrl = + %(prl/z,j — Hxity2j) + %(HYi,jfl/Z — Hyij+2). (14)
In Eq. (14)Hxi+1/2,; denotes the flux of volume fractiohacross the right edge of the cell
(i, j) andHy; j+1/2 denotes the flux of across the upper edge of the qellj). Calculation
of the fluxH on the cell boundary depends on the cell, which is oriented upwind with tt
respect to the velocity. If the upwind cell is calculated with the VOF model, then the VC
advection algorithm is used (Fig. 3a); otherwise the two-fluid model is used to calculate
flux Hxit1/2,; by the flux corrected transport algorithm [39] (Fig. 3b).

b)

FIG. 3. Flux at coupling of two-fluid and VOF area. (a) Flux calculated by VOF model. (b) Flux calculate
by “two-fluid” model.
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5. SWITCH BETWEEN THE VOF AND THE TWO-FLUID MODEL

After the update of the volume fraction variable the VOF model or two-fluid model
has to be assigned to each cell. The cells, which contain only one fluid, are automatic
in the VOF domain. The essential problem of the coupling is a choice of a switch criteric
According to this criterion, the model that will be used in mixed cells, cells that conta
both fluids, is chosen. The criterion must be based on the estimation of the local disper:
of the interface in the cell.

In our work the dispersion is estimated with the same function (5) that was used for
interface reconstruction. A dispersion function in the ¢ellj) is defined as

Yiij = min(Gi,,- (ﬁ)) (15)

The functionG defined by Eg. (5), which was originally developed for the calculation o
the interface segment orientatidnn the LVIRA interface reconstruction algorithm, turns
out to be useful also for the estimation of the local dispersion. A dispersion funetion
checks the positions of the fluids in the<x33 block of cells with the respect to the best-
estimated interfacB. The perfect non-dispersed state in the 3 block is achieved when
the fluids are separated with the interface of the linear shape. In such a case the value ¢
dispersion function is zero; i.er, = 0. If a part of the fluid is located on the “wrong” side
of the interface reconstucted by LVIRA algorithm, then- 0.

In order to couple the two-fluid model and the VOF model, a constant parameiter
required, such that

if %.; < o, the interface in the cell (i, j) is reconstructed and the VOF model is used
(16)
if %,; > o, the fluids in the cell (i, j) are calculated with the two-fluid madel

The parametey, is a free input parameter of the model coupling. Setfiatp the maximal
possible value of dispersiogn means that the whole transient is calculated with the VOF
method, whereas setting to zero means no interface reconstruction and the two-flui
model is used the whole time on the whole domain.

5.1. Transition from the VOF to the Two-Fluid Model

In order to make the coupled model efficient the paramgienas to be determined
properly. For that purpose it is necessary to estimate the upper bound of the dispersic
and to analyze the behavior pfin few typical two-phase systems, which are relevant to «
given problem. The two-fluid state in thed3 block of cells can be very complex; therefore
the characterstics of are determined numerically. Numerical tests with different physice
phenomena [10-12] and simple numerical calculations on th@&®lock have shown that
the upper bound for the dispersigns y = 5. Figure 4 shows an example of a system with
the maximal dispersiop = 5. The situation shown in Fig. 4 is rather unrealistic and neve
appears during the simulations of physical phenomena [12].

In order to estimate maximal valuesyofn more realistic system, a homogenous mixture
with f (X, y,t) = fconstiS considered first. The LVIRA interface reconstruction algorithm
can be applied for such a system, despite the fact, that the reconstructed interface has nc
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FIG. 4. Dispersiony = 5 for the non-homogeneously dispersed fluids.

to do with the real physical picture. However, the resulting funciiadefined by Eq. (15)
can be used as a measure for the dispersion. Figure 5 shows the dispersion furadtion
the homogeneous mixture as a function of the volume fracfigns. The dispersiory
varies betweery = 1.5 and the maximal valug = 2 at f = 0.09 (see Fig. 6). It turns
out [12] that the maximal values of in realistic simulations are seldom higher than 2.
Thus, in order to avoid the treatment of the homogenous mixture with the VOF model
switch parameter has to be limitedjtp < 1.5. However, the analysis of the dispersion in
non-homogenous dispersed states with chunks larger than the grid size is required to o
a more accurate value @§.

Further analysis of the dispersignshows that it can be split into two parts:

I: Reconstruction of a single interface that cuts the 3 block of cells into two parts
(see Fig. 1) results in a nonzero dispersjo(il5), when the interface is not linear in the
3 x 3 block.

JTT—

0 T T T T 1
0 0.2 04 06  f 08 1

FIG.5. Dispersiony in the homogenous mixture as a function of volume fraction.
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FIG. 6. Maximal dispersiory = 2 of homogeneously dispersed fluids.

Il: The second type of dispersion appears when two chunks (bubbles) of the disper
fluid approach a distance smaller than the grid size.

Both parts ofy are analyzed in this section.

I. One of the most common topological shapes in two-phase flow is a bubble, whick
used for the examination of the part | of dispersjarigure 7 shows a circular bubble with
a center in the poing(x, y) and diameted on a mesh with the grid spacitg The maximal
dispersion calculated in any of the cells covered by the bubble interface is denotgd as
All relative positions of the bubble were checked numerically by moving the center of tl
circle Swithin a single cell (Fig. 7, hatched area). Figure 8 shows the maximal dispersi
ywm for different bubble positions. The result in Fig. 8 shows that ugiag a measure of the
interface dispersion gives values, which depend on the position of the interface in the disc
grid. An ideal parameter for measuring the dispersion should have a constant value fo

——

W
N\

‘d¢,T
h

FIG. 7. Position of a circular bubble on a grid.
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FIG. 8. Maximal dispersioryy for circular bubble wittd/h = 3.8.

positions of the bubble; however, it is probably impossible to construct such a parame
More detailed behavior of the dispersigris given in Fig. 9, wheremi, = min(ym (X, Y))
andymax = max(ym (X, y)) are given as functions of the bubble diameter to cell length rati
d/h. Alargerd/h ratio means more grid cells per bubble and results in smaller values
the dispersiory. Figure 9 shows a rapid increase pfvalues for diameterd less than
approximately B to 3h. This result shows that at least three grid cells per bubble diamet
are needed to capture its circular shape with some minimal accuracy and justifies the ct
of y as a measure of the interface dispersion.

The resultin Fig. 9 allows us to set a new threshold vaduisettingyy = ymaxdetermines
the minimal characteristic size of the bubble, which can be simulated with the VOF meth
For example, settingy = 0.6 means that the bubble or a part of the surface with th
characteristic sizd > 4h are treated with the VOF model. Smaller chunks with dispersio

1.2 4
0.8 -

0.4~

O T :l T T 1
0 2 4 6 s dh 4o

FIG. 9. Dependence of the dispersion parameters from the bubble diameter.
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FIG. 10. Part lla dispersion due to the nearby interfaces.

Ymax> Yo @ndymin < yo Might be still treated with the VOF model, but as such chunks mov
over the discrete grid, the dispersion in some cell on the interface sooner or later exce
the parameter valug, and switches the cell to the two-fluid model.

1. If two chunks of fluid approach each other at a distance comparable to the grid spaci
y will grow and the two-fluid model will be switched on. This type of dispersion is name
part Il dispersion and is shown in Figs. 10 and 11. The original volume fraction is sign
with gray color and the reconstructed interface is presented with the thick line. The hatc
area covers the mesh cells, which contribute to the dispersion in the centgr cdliue
to the linear interfaces there is no part | dispersion in Figs. 10 and 11, but only the par
dispersion due to the presence of the nearby interface appears. There are two kinds of
Il dispersion:

Ila: Nearby interface enlarges thevalue, but does not disturb the reconstruction (Fig. 10)

IIb: Nearby interface is so close that the reconstruction fails (Fig. 11).

FIG. 11. Part llb dispersion—reconstruction error due to the LVIRA failure.
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FIG. 12. Homogenous distribution of bubbles withi h = 3.

The analysis of the dispersion due to the interface contact is needed to determine
relation between the threshaolg and the failed reconstruction. The VOF model should no
treat the state, where the reconstruction failure appears. Due to the numerous combina
of states, where two interfaces come into the contact in thke8dlock of cells, the part I
dispersion analysis was performed statistically.

The dispersiory from Eq. (15) cannot distinguish the dispersion cases lla and llb. Tt
reconstruction error IIb can only be detected by comparison with the exact solution. Tl
the part Il dispersion was analyzed in the homogenous mixture of constant diameter bub
shown in Fig. 12. For that purpose the following expression based on the volume fract
difference is used to measure the reconstruction error

1
8= V /( fexact_ frec)zdv~ (17)
1
\%

The reconstruction error is denoted with fexact is the exact volume fraction function
that is known in advancefy is the approximation of the original state obtained with the
LVIRA reconstruction algorithmy is the computational domain, ang = fv fexactd V
is the volume of the dispersed phase used as a normalization faetod. means that
the reconstruction is absolutely corregt> 0 is caused by a linear reconstruction of the
curved interface and/or failed reconstruction of the interface that corresponds to the par
dispersion. The expression (17) compares particular cells without their local surrounc
(unlike dispersion (15)); therefore it does not detect the part lla dispersion due to the ne:
interface.

In order to compare the dispersignand reconstruction errdr, the average dispersion
is defined as

v = (18)

2 Zj Vi
- N

It is calculated on the whole domain, whe¥es a number of the cells, which contain both
fluids.
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FIG. 13. Comparison of dispersion and reconstruction errat/dt = 3.

The comparison of the average dispersiand the reconstruction errdcan distinguish
dispersion parts lla and Ilb. Figure 13 compatesdy for the state of the uniform bubble
mixture as a function of the bubble densitg/th ratio at a constartt/ h ratio. The constant
values of the functiong ands at largea/ h ratios (part A in Fig. 13) are due to the linear
approximations of the curved interfaces, which depend only on the size of the bubies (
ratio). In part B the dispersion is enlarged due to the presence of the nearby interface b
the reconstruction does not fail yet (example in Fig. 10), since reconstructiors ésroot
enlarged. The part C in Fig. 13 is the area where the LVIRA reconstruction algorithm fa
(example in Fig. 11).

The goal of this procedure is to estimate of the reconstruction error llb with the dispers
function y and to impose additional constraints on the threshold paramgt@ihe area
wherey is larger than the threshold valge is in the two-fluid model domain and in that
case the interface is not reconstructed. When calculating the reconstructios iritbe
coupled model that area is excluded from éhe

1
3(yo) = Vl / (fexact— frec)zdv~ (19)

VV =10

Figure 14 shows the dependence¢fy) on thea/h ratio at a constant bubble diameter
d/h = 3 for the system shown in Fig. 12. The smaljgrparameter reduces the recon-
struction erroib (yp) since a larger portion of the area with failed interface is excluded fror
the integration domain in Eq. (19). If the interfaces of the structures are so close that
reconstruction fails, that area should be detected by the dispersion criterion and exclu
from the integration (19). Figure 14 shows that for the case of uniform bubble mixture
d/h = 3, yo should not exceed the number of approximajgly- 0.8. For larger values of
0, the areas with failed interface reconstruction can be erroneously treated with the Vv
method. In general this assumption defines)theparameter, which in the casg = yec
excludes the area with failed reconstruction. In that case the reconstructiors @xser
(Fig. 14) does not increase when théh ratio is decreased. Calculations shown in Fig. 14
were repeated for differenl/ h ratios and/.c as a function of the bubble diametbth was
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FIG. 14. Reconstruction error for different values of switch paramegeatd/h = 3.

obtained. It is presented in Fig. 15. According to the in Fig. 15, setting/ < 0.4 ensures
that almost every cell with the reconstruction error of type llb switches to the two-flu
model. On the basis of the numerical experiments, a larger valee0.6 was chosen in
this work. That allows some reconstruction error for the chunks larger than approximat
d/h > 6. This choice is justified by the physical picture of the phenomena: when two su
large chunks approach it is often more sensible and accurate to keep the simulation
the VOF method and allow some reconstruction error at merging, than switching to the |
accurate two-fluid model, which cannot improve the prediction of the merging process.

5.2. Transition from the Two-Fluid to the VOF Model

Stratification of mixed fluids is the reverse process of the dispersion. The transit
from the VOF to the two-fluid model depends on the interface position and distortion. T

1.2 4 .

0.8 4 T~y

0.4 1

0 2 4 B g dh 1o

FIG. 15. Dependence of thg.. parameter from the bubble diameter.
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FIG. 16. Setting interface at the stratification process.

reverse process is more complex since the more accurate VOF model has to be acti
from the results of the less accurate two-fluid model. Additional empirical correlations m
be required in some two-fluid models to describe such a transition. Besides the volt
fractions, these correlations may include also other variables such as a relative velc
between fluids. It turns out that the dispersipwith 19 = 0.6 can be used as a simple

model of transition from the two-fluid to the VOF model. The results show that this is
successful approximation in the presented case.

In the simplest case, when homogeneously dispersed fluids are separating in a vel
direction, the coupled model sets up the interface horizontally as shown in Fig. 16. The uf
cells indicated with the lighter gray area contain smaller volume fraction of the heavier flt
fa than the bottom cells, > f,. Despite the fact that the system is dispersed and treate
with the two-fluid model equations, the LVIRA algorithm is applied in each cell in order t
obtain the dispersiop. The stratification appears in the cells wjth< y,, where the VOF
model sets up the interface. In the simple case shown in Fig. 16, the interface is locate
all three middle cells due to the homogeneity of the problem in the horizontal direction.
that case the relation between the valdigand f,,, at which the interface is reestablished,
can be calculated from the simplified Eq. (15):

1/2
y=3f2431- )l <p= fa< (%-(1— fb)2> . (20)

Figure 17 shows the area of valugsand f,, where the interface is set up during the
stratification process for two different values)gf

The necessary (but not sufficient) condition for the interface reestablishmgnti6.5
and f,>0.5 (or f,>0.5 and f, <0.5); i.e., the interface can be established only
between the mixture of bubbles and the mixture of droplets. This is a consequence of
physical/geometrical property that bubbles or/and droplets cannot exist if the continu
fluid has a void fractiorfcon; < 0.5 [6]. In the case when volume fractioffig, f, < 0.5, the
thresholdyy has to be smaller than the minimal possible dispersion to avoid the construct
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FIG. 17. Ratio of volume fractiond, and f, at the point of interface setup.

of the interface
fa, fo < 0.5 = yo < min(3f2 + 3(1 - f,)?) = 0.75. (21)

Due to the symmetry of the void fractions, the same limitfgis obtained forfy,, f; > 0.5.
Values different from 0.75 are obtained for stratification in directions that are not paral
to the discrete grid, or for a general stratification. However, the differences are small.

According to the results of the calculations summarized in Figs. 9, 15, ang £70.6
was used as a value of the threshold paramegterhis value gives the following properties
of the coupled model:

(1) The chunks with the characteristic site- 4h are treated with the VOF model. The
surface of the smaller chunks is at least partially assigned to the two-fluid model.

(2) The reconstruction error can appear in the VOF model when the chunkd with
approach each other.

(3) The stratification cannot be activated, when the continuous volume fractigpds<
0.6. Larger values ofy allow smaller structures and therefore less accurate reconstructi
of the interface, while smaller values activate the two-fluid model in the areas where
VOF model is still accurate.

6. RESULTS

For testing the coupled model two different examples were chosen. The idealized exar
of the vortex flow [38] was used to show the behavior of the coupling algorithm wi
advection and vorticity. The second simulation of the Rayleigh—Taylor instability sho
the capability of the coupled model at the physical problem.

6.1. Simulation of the Vortex Flow

For the overall estimation of the reconstruction error a test problem with the topologi
changes of the interface is needed. The two-dimensional test problem, that beside:
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topology change is also easy to implement, is the vortical flow test proposed by Rider
Kothe [38]. Such test is representative of the interfacial flow in the real physical syste
such as the Rayleigh—Taylor instability where the sharp gradients in the fluid properties |
the transient mechanisms. This test was used in [38] and [48] for estimating the accul
of the particular reconstruction algorithms and for comparison to the other reconstruct
algorithms.

The vortical flow test uses a fixed velocity field defined by the stream function:

U= %sinz(nx) Siré(rry) (22)

The initial state of the fluid 1 is a circle with the radius= 0.07 whose center is located
at the pointS(0.5, 0.87) (Fig. 18). The vortical velocity defined by (22) deforms the circl
into the curved stripe. Figure 19 shows the state-atl.6 calculated with the VOF model
on the 224x 224 grid. This is the maximal time, where the VOF method is capable of full
resolving the state onthe 224224 grid. Theoretically the fluid structure during the rotation
makes a spiral of the thin stripe, which stays continuous even in the case of infinite whirli
t — oo. During the simulation when the thickness of the fluid is close to the grid size tl
numerical dispersion occurs. The original stripe decays into several parts comparable tc
grid size as shown in Fig. 20. Figure 21 shows the same state simulated with the cou
model, where the volume fraction field is presented with gray casts. Since the two-fl
model is involved in the calculation, the result is affected by numerical diffusion. Howeve
this solution is still closer to the real world than the solution in Fig. 20. To evaluate tt
correctness of this particular simulation approach we compare the volume frattiitts
the “correct” solution by

1
Srod®) = = > (faiaa® — Tarias (D)), (23)
(i,j)eVv

where fyig a iS @ volume fraction field calculated on a coarser gffighys is a volume
fraction calculated on a finer grid (Fig. 19) and interpolated on the coarseA gtV is
avolume of the fluid ; = " fgrig a. In Our case the result on grigl = 224 x 224 is used

FIG. 18. Initial state of the vortex flow test.
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FIG. 19. Solution of the vortex flow test at= 1.6 calculated on 224 224 grid with the VOF model.

as a “correct” solution. In Fig. 22 tht) for different mesh density and different models are
compared. The errax(t) is close to zero till the numerical dispersion occurs. On the mes
28 x 28that happens at= 0.75 and on 56x 56 att = 1.2. After that the numerical surface
tension enlarges the error of the VOF model simulation, while the numerical diffusion affe
the result of the coupled (two-fluid) model. The changé @§ is more rapid at the VOF

B

.

11
T
1

:?:

11

T
Il
[N}
T

FIG. 20. Solution of the vortex flow test at= 1.6 calculated on 56& 56 grid with the VOF model.
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FIG. 21. Solution of the vortex flow test at= 1.6 calculated on 56 56 grid with the coupled model.

model since the numerical surface tension disperses the fluids in a relatively short t
interval. On the other hand the numerical diffusion of the two-fluid model enlarges the er
more continuously.

A better numerical scheme would improve the results of the two-fluid and the coupl
models; however, it cannot avoid the numerical surface tension effect.

6.2. Simulation of the Rayleigh—Taylor Instability

The only true evaluation of the coupled model is a comparison to the correspond
experiment. A comparison of results obtained with the coupled model and the real exp
mental data is possible only partially: like the numerical methods, which are designed
the simulations of the dispersed or stratified flow, the experiments are also specializec

0,6 -
J VOF 28x28 ",
0,5 - coupled 28x28 *
- = = -VOF 56x56
049 ... coupled 56x56 .
v
0,3 4 . .
‘ . RN pN
0,2 4 .
0,1 4

05. 1.0 t 15 20

FIG. 22. Time development of(t) for the vortex flow test fromt = O tot = 2.
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the examination of a particular flow type. Among the basic two-phase flow phenomena s
as the Kelvin—Helmholtz instability [35] and the bubble stability [43], the Rayleigh—Taylc
instability turns out to be the most suitable for the assessment of the coupled model, s
during the transient the two-phase flow changes from stratified to dispersed and vice Ve
Besides that, the Rayleigh—Taylor instability has been examined with humerous calci
tions and serves as a kind of benchmark test for novelties in the two-phase flow model
A similar work to our study has been performed by Glimm and co-authors, where the r
ing zone at Rayleigh—Taylor instability was examined [18]. That study combined the frc
tracking method with the statistical model [17] to handle the late nonlinear and chaotic st
of the Rayleigh—Taylor instability. In our work, the numerical simulations with differen
grid densities were performed to point out the capability of the coupled model to handle
dispersion problem with some limited accuracy even on a coarse grid.

In the initial state of the phenomenon, the heavier flpid= 3 lies above the lighter
onep, = 1 in a channel with the width 1 and height 5. The sinusoidal disturbance of t
interface with the amplitude 0.002 is increased due to gravity accelemtiod0. Both
fluids have the same kinematic viscosity= v, = 1072. All quantities mentioned above
are nondimensional.

Figures 23 and 24 show the VOF simulation performed with different grid densitie
The heavier fluid is marked with balck and the lighter fluid is white. Figure 23 shows tt
the VOF method successfully resolves the instability on the grigt 280 or denser until
t ~ 2. Further development of the phenomenon mixes the fluids to the dispersed st

6x30 12x60 24x120 48x240 96x480

A
\ 4

FIG. 23. State of the Rayleigh—Taylor instability at tirhe= 2.0 simulated with the pure VOF method.
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because there is no force like a surface tension, which would limit the dispersion. A den
and denser grid is needed to resolve the continuation of the transient. For example,
dispersed state like the onetat 8 in Fig. 24 shows a different distribution of fluids for
every nodalization. Such a state is far beyond the capabilities of tte488 mesh and our
computer hardware.

The grid dependence is investigated in the same way as Eq. (23), as in the vortical 1
test. Figure 25 shows the temporal development ofthgt) function for several pairs of
grids. Inthe initial phase of the transient higher resolution gives more accurate results (lo
Snod) Since the reconstruction errors appear later. However, after a certain time interval, w
the fluids are well mixed, all VOF simulations end with unacceptable reconstruction errc
The VOF method numerically disperses the fluids on small chunks, whose size depend
grid density—denser nodalization produces smaller chunks. Their motion is significar
affected by the reconstruction error and is not physical. “Numerical” chunks on a den
grid moves slower and therefore the volume fraction distributiondagngt) significantly
depends on the grid density at the sedimentation part of the transient.

Figure 26 shows one of the initial stages simulated with the coupled model using differ
grid densities. The black and white areas denote the position of the heavier and lighter fl
respectively, while the two-fluid mixture is presented with gray casts. Larger volume fracti
of the heavier fluid (largeff) is presented with darker cast. The finer grid is capable ©
simulating smaller structures before the two-fluid model is activated. Therefore at higl
resolution a smaller area is calculated with the two-fluid model (gray area in Fig. 26). T
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FIG. 25. Convergence of VOF model.

two-fluid model is first activated on the part of the interface with the smallest characteris
size (gray area in Fig. 26 at finest resolution). After that it is spread around due to the fur
fluid motion and also due to the numerical diffusion, which affects the volume fraction fie

in the two-fluid model.

6x30 12x60 24x120

=i
0.9<f<]
0.7<f<0.9
0.5<f<0.7
0.3<f<i}5
0.1<f<0.3
<f=0.]
=0

minjuinisis) § |

48x240

FIG. 26. Grid dependence of the coupled model showed on the state &t0.
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FIG. 27. Time development of the instability simulated with the coupled model or 280 grid.

Figure 27 shows the time development of the instability simulated with the coupl
model. At the initial stages of the transient the VOF model is used. Once the two-flL
model is activated, it is spread all over the calculation domain due to the vortices, wh
appear during the transient. In the final stages of the transient, mixing of the fluids is repla
by the stratification process, which leads to the reverse process—construction of the
interface and activation of the VOF model between the lighter and the heavier fluid. Mixi
and stratification processes are described by the two-fluid model and depend mainly or
empirical constant for the interfacial frictiar.

The interfacial friction constanty should be evaluated in order to describe the rea
physical picture as close as possible. Since the correct solution of the problem is not kn
and there is a lack of experiments, which would give appropriate data, the evaluat
appeared to be a rather difficult task. Therefore the simulation of the Rayleigh-Tay
instability with the pure VOF model was used as a reference solution to detecgine
Although this bulk solution is not accurate, it is used for comparison with the couple
model. Since the simulation with the pure VOF model is grid dependent, only the result
the 48x 240 mesh density is used for the valuation of the interfacial friction, which is s
to cg = 40 to match the bulk solution as close as possible.

The characteristics of the coupled model are showed similarly as pure VOF mode
Fig. 25 by comparing the volume fraction distributions of different resolutions with th
Eqg. (23). Figure 28 shows,oq(t) of the coupled model for several pairs of grids. Bhey
stays low when the same model is used on both grids (VOF model at the beginning
two-fluid model at the end of the simulation). The péalg occurs at switching from VOF
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FIG. 28. Convergence of the coupled model.

to two-fluid model. The switch is grid dependent and on denser resolution it turns on la
The peak indnq(t) describes the part of the transient when the two-fluid model on tt
coarser grid has already been switched on, while the VOF model still works on the fi
grid.

For the initial part of the transierit < 2) denser grids give lowet,q(t) because the
coupled model uses the VOF model, which is capable of simulating that part and is
affected by the reconstruction error. Later( 5), when the fluids dispersé,oq(t) is much
smaller than that in the VOF model (Fig. 25) for all grid densities. The distribution ¢
the volume fraction in the second part of the transignt 5) is driven by the two-fluid
model and depends mainly on the interfacial friction constant. On the other hand the \
ume fraction distribution in the pure VOF model appeared to depend also on the ¢
density.

Since the parametesgoq(t) of the coupled model in Fig. 28 are approximately the sam
asdnog(t) of the bulk solution and are much lower thégq(t) of the pure VOF model,
we confirmed the low grid dependence of the coupled model. With the inclusion of t
two-fluid model the coupled model becomes less grid dependent and is able to simu
the problem on the coarsest grid more correctly than the pure VOF model on the higt
resolution.

7. CONCLUSIONS

The coupling of a simple VOF model and a two-fluid model was proposed and used
the simulation of the two-phase problem with the dispersion of the interface. The interf:
tracking algorithms such as the VOF method are useful for the simulation of the initial p
of the phenomenon. But further development of the instability is beyond the capabilit
of the interface tracking algorithms, which are limited by the grid size. The addition
the two-fluid model to the model with the VOF method eliminated this problem and e
abled the simulation of the whole phenomenon without the restriction imposed by the ¢
density.

The coupled model exploits particular characteristics of both models: accurate simula
of the interface with the VOF model and relatively small grid dependence of the two-flL
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model in the dispersed flow. The switch parameter between the models is provided fi
the function, which is already used by the LVIRA interface reconstruction algorithm in t
VOF method. Some simple numerical calculations have shown that the switch param
yo between 0.4 and 0.6 is the most proper value to change from the VOF to the two-fl
model and vice versa. This value disables the interface reconstruction of the chunks witt
characteristic size close to the grid size and smaller and replaces it with the two-fluid mo
The switch between the models is based only on the position of the volume fractions, and
be upgraded for more complex transients with other parameters and empirical correlati

The coupled model gives results, which are grid dependent; i.e., a denser nodaliza
does not result in a grid independent solution, but it gives a better approximation. T
simulation of the coupled model with the lower nodalization gives qualitatively the san
result as on the higher resolution but with a larger error.

The vortex flow test and simulation of the whole transient of the Rayleigh—Taylor inst
bility, until the fluids exchange their positions, has showed that the coupled model of
VOF model and the two-fluid model enables a more realistic calculation of a wider ran
of two-phase phenomena than the pure VOF model. Comparison of the coupled model\
experimental models is difficult since there are not many experiments investigating b
the interface tracking and the dispersion phenomena at the same time.
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