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The volume of fluid (VOF) method, which uses an interface tracking algorithm
for the simulation of the two-phase flow, is coupled with the “two-fluid” model,
which is based on time and space averaged equations and cannot track the interface
explicitly. The idea of the present work is to use the VOF method in the parts of the
computational domain where the grid density allows surface tracking. In the parts of
the domain where the flow is too dispersed to be described by the interface tracking
algorithms, the two-fluid model is used. The equations of the two-fluid model are less
accurate than the VOF model due to the empirical closures required in the averaged
equations. However, in the case of the sufficiently dispersed flow, the two-fluid model
results are still much closer to the real world than the results of the VOF method,
which do not have any physical meaning when the grid becomes too coarse. Each
model in the present work uses a separate set of equations suitable for description
of two-dimensional, incompressible, viscous two-phase flow. Similar discretization
techniques are used for both sets of equations and solved with the same numerical
method. Coupling of both models is achieved via the volume fraction of one of the
fluids, which is used in both models. A special criterion for the transition between
the models is derived from the interface reconstruction function in the VOF method.
An idealized vortical flow and the Rayleigh–Taylor instability are used as tests of
the coupling. In both cases the time development causes mixing of the fluids and
dispersion of the interface that is beyond the capabilities of the model based on the
VOF method. Therefore the two-fluid model gradually replaces the interface tracking
model. In the final stages of the Rayleigh–Taylor instability, when both fluids are
approaching their final positions and the tractable interface appears again, the two-
fluid model is gradually replaced by the VOF method.c© 2001 Academic Press
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1. INTRODUCTION

Two-phase flow plays an important role in many natural and industrial processes such
as combustion, petroleum refining, chemical engineering, nuclear technology, and others
[27, 47]. It is a very complex phenomenon, which appears in various forms with different
characteristics. The numerical simulation is an important tool for the investigation of the
two-phase flow and it makes a significant contribution to the understanding of the two-
phase flow characteristics and vice versa—the variance and complexity of two-phase flow
stimulate the development of many different mathematical models and numerical tools for
its simulation. The mathematical models and the computational methods for the particular
types of two-phase flows are usually adapted to the physical characteristic of the phenomena
and therefore differ significantly.

The interface tracking methods, which are used for the simulations of the transients
with moving discontinuous interfaces [24] are the basic two-phase flow models from the
standpoint of the Navier–Stokes equations. Since they are based on the fundamental Navier–
Stokes equations they explicitly track the interface. During the calculation they keep the
interface sharp and enable the accurate location of the particular fluid at any time during
the transient. Such an approach allows direct simulations of the two-phase flow phenomena
like the phase change and surface tension [2, 29].

There are many types of interface tracking methods, which can be classified according to
their approach used to track the interface. The volume of fluid (VOF) [23] method and level
set method [36, 40], which use the static grid to locate the fluids, are very popular for the
simulation the two-fluid flow problems with significant changes of the interface topology.
They experienced several modifications ([19, 34, 36, 38]), and were applied to a variety two-
fluid flow problems. There are also several algorithms, which use Lagrangian approaches to
track the interface. The marker-and-cell method (MAC) [21] was one of the first interface
tracking methods. Besides the static Eulerian grid it uses massless particles scattered over
the fluids, which are transported in a Lagrangian manner to locate a particular fluid. The
front tracking methods [17, 45] offer the most explicit way for the interface description. In
these methods the massless points are located only on the interface and are linked together
in the mesh, which moves together with the fluids. In the fully Lagrangian algorithms [22]
the mesh moves together with the fluids and no special tool for interface tracking is needed.
Due to the complex mesh handling [1] they are suitable to simulate simple two-fluid flow
problems without significant topological changes of the interface.

The novelties and improvements of the interface tracking algorithms are usually demon-
strated on a small number of typical two-phase flow transients, such as the Rayleigh–Taylor
instability [14, 18, 35], shape and stability of a rising bubble [3, 8, 43], or a falling drop
[20]. The improvements of these methods and computer hardware development have en-
abled some complex simulations, such as the three-dimensional simulation of several
rising bubbles [5], merging and fragmentation of drops [31], and precise calculation of the
pinching pendant drop [19]. However, the limitation of the interface tracking simulations is
obvious: none of the simulations mentioned above crossed the point where the discrete grid
could not follow the dispersion of the interface. In a dispersed flow, where chunks of the
particular fluid are smaller than the grid cells, the surface tracking is not possible and the
results of the interface tracking methods lose their physical meaning. A phenomenon, when
an interface tracking algorithm numerically disperses, and/or merges the fluid chunks, and
drives the transient, is called “numerical surface tension.” This was first noticed by Glimm
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et al. during the simulation of the chaotic stage of the Rayleigh–Taylor instability with
the front tracking method [18] and was examined in the vortical flow test with the VOF
method by Rider and Kothe [38]. Denser nodalization is usually suggested as a solution to
this problem [13].

Since most two-phase flows of practical importance are too dispersed to be resolved
with the interface tracking algorithms, it is clear that different approaches are necessary.
Modeling of the applicable multi-phase flow was thus based mainly on the averaged Navier–
Stokes equations in the past three decades. Despite the weakness common to all averaging
schemes—a lack of knowledge of the closure relations—two-phase flow modeling will not
be possible without the averaged models in the foreseen future.

The so-called two-fluid models, based on time averaging and described in the textbook
of Ishii [26], were among the first averaged models of two-phase flow. Later spatial and
statistical averaging were used by different authors [15, 42], resulting in similar two-fluid
model equations. A typical two-fluid model for a general two-phase flow, used, for exam-
ple, in nuclear thermal-hydraulics [6], is one-dimensional and consists of the continuity,
momentum, and energy balance equation for each phase. Results of the simulations are of-
ten unreliable, due to the large uncertainty of the interfacial mass, momentum, and energy
exchange terms. These uncertainties are caused by different flow regimes, which can appear
in the two-phase flows.

More accurate two-fluid models are available for a dispersed flow [9], especially when
the dispersed phase represents solid particles and the interfacial area is exactly known.
Bubbly or droplet two-phase flow are more complicated than the solid particle flows, since
the interfacial surface is changing. However, two-fluid models for such flows are still much
more accurate than the general two-fluid models [6] that attempt to describe all two-phase
flow regimes.

This work presents the coupling of both models, which retains the accuracy of the interface
tracking schemes for a simple two-phase flow and eliminates the need for the special closure
relations of the two-fluid models for the same simple flow. When the flow is dispersed and
the interface tracking becomes impossible, a relatively accurate two-fluid model is available.
Among many different well-established interface tracking algorithms the VOF method is
assumed to be the most convenient, because the color function in the VOF model and
volume fraction in the two-fluid model actually represent the same variable. This variable
represents the basis of the proposed coupling mechanism.

Two tests are used to analyze the coupling. The first is the idealized problem of the
vortex flow by Rider and Kothe [38], where the coupling algorithm is tested by advection
and vorticity. The second is a physical problem of the Rayleigh–Taylor instability in a closed
tank. This problem was examined numerically and experimentally many times in the past
and it serves as a benchmark test for the interface tracking algorithms. In the present work
the whole phenomenon is simulated until the fluids completely exchange their positions and
the system becomes stable. Jacqmin [28] simulated a similar case with a phase-field model;
however, in his particular case of Rayleigh–Taylor instability the characteristic length scale
of the dispersed chunks was larger than the grid size so the method did not fail. In our
case, the dispersion is far beyond the capabilities of the interface tracking method and both
methods are required to simulate the transient.

In the next two sections the main characteristics of the applied VOF model and the
two-fluid model are pointed out. The fourth section is dedicated to the description of
the coupling, and the fifth section describes the switch mechanism between the VOF and
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the two-fluid model. The sixth section reports the results of the idealized vortex flow and the
Rayleigh–Taylor instability simulated with the coupled model and the last section gives the
conclusions.

2. A MODEL BASED ON THE VOF METHOD

A model based on the VOF method is suitable for describing two-phase problems, where
the characteristic length of the interface shape is larger than the grid size. This model
describes the two-phase flow by the Navier–Stokes system consisting of a continuity and
momentum balance equation. For the two-dimensional system of incompressible viscous
fluids these continuity and momentum equations are usually used [37, 43]

∇ · Eu = 0, (1)

ρ
∂ Eu
∂t
+ ρ(Eu · ∇)Eu = ρEg−∇ p+∇ · (µD

¯
), (2)

whereEu = (u(x, y, t), v(x, y, t)) is a two-dimensional velocity field,p = p(x, y, t) is a
pressure field,D

¯
= (∇Eu+∇EuT )/2 is a viscous stress tensor, andEg is a gravity. Both fluids

are treated with the same equations, where the densityρ(x, y, t) and the viscosityµ(x, y, t)
are functions of space and time denoting either the first or the second fluid. The surface
tension force does not play an important role in the process of model coupling; therefore it
is omitted in the present work. If there is a need for the surface tension modeling it can be
included without any essential change to the model coupling.

2.1. The Interface Tracking Algorithm

The interface tracking in the VOF method is based on the color function, which marks
the fluids in the following way [37]

f (x, y) =
{

1 if place(x, y) is occupied by the fluid1

0 if place(x, y) is occupied by the fluid2.
(3)

The function f is evaluated on the discrete grid as a volume average

fi, j = 1

Vi, j

∫
Vi, j

f (x, y) dV, (4)

whereVi, j is the volume of the cell(i, j ). The interface tracking algorithm consists of the
interface reconstruction and an advection algorithm.

The interface reconstruction algorithm is not unique. There are several algorithms with
different accuracy and complexity. The LVIRA algorithm [37] is used for the reconstruction
of the interface in our work. This algorithm makes a linear approximation of the interface by
putting a line segment in each multi-fluid cell, i.e., in each cell which has 0< fi, j < 1. The
approximate interface orientation in the cell(i, j ) is determined from the volume fractions in
a 3× 3 block of neighboring cells. The orientation of each interface segment is determined
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FIG. 1. Interface reconstruction with the LVIRA algorithm.

by the normal vectorEn, which is calculated by the minimization of the function

Gi, j (En) =
1∑

l=−1

1∑
k=−1

( fi+k, j+l − f ′i+k, j+l (En))2. (5)

An example of this algorithm is shown in Fig. 1 where fluid 1 is signed with the dark shade
and the fluid 2 with the white one. The values offi+k, j+l are known volume fractions of the
fluid 1 in a 3× 3 block of cells. The values off ′i+k, j+l (En) are the volume fractions (hatched
area) due to the line with the normalEn (dotted line in Fig. 1), which divides the block on
two parts and conserves the volume fraction in the center cell of the block; i.e.,fi, j = f ′i, j .
The LVIRA algorithm puts the interface segment between the boundaries of the cell(i, j )
(thick black line in Fig. 1).

The second step in the interface tracking is the advection algorithm for the evolution of
the volume fractionsf in time. The volume fractionf follows the equation [23, 37]

∂ f

∂t
+∇ · (Eu f ) = 0. (6)

Equation (6) reflects the fact that in an incompressible fluid the conservation of mass is
equivalent to the conservation of volume and hence the conservation off . The unsplit
advection algorithm [37, 38] is used to calculate the temporal evolution of the volume
fraction field f from Eq. (6).

The volume fraction function is used for the calculation of the fluid properties in the grid
points, where both fluids are present:

ρi, j = fi, jρ1+ (1− fi, j )ρ2. (7)

µi, j = fi, jµ1+ (1− fi, j )µ2. (8)

The essence of the VOF model is to keep the interface sharp, which allows accurate location
of the particular fluid and direct simulation of the eventual surface phenomena (surface



INTERFACE TRACKING AND TWO-FLUID MODELS 781

tension, phase-change, etc.). The accuracy of the model depends on the applied numerical
scheme and on grid density. The model is not capable of simulating the phenomena with
the scale smaller than the grid size.

3. THE TWO-FLUID MODEL

The two-fluid models are suitable for the two-phase problems, where the length scale
of the interface shape is smaller than the grid size. The basic property of those models,
that is, a consequence of the temporal and/or spatial averaging, is that each fluid as a
continuum occupies the whole domain and therefore the interface is not calculated explicitly.
Information lost by the averaging is replaced by more or less accurate closure relationships
for the interfacial transfer of mass, momentum, and energy provided empirically mostly
from experiments. This approach is more suitable for simulations of the dispersed flows;
however, appropriate correlations also allow simulations of two-phase flow phenomena
where the characteristic length of the interface is large compared to the grid size. The two-
fluid models are usually designed for the simulations of the compressible two-phase flow
[44], but in some cases, where the fluid velocities are small compared to the sound speed,
the incompressible model is used [32]. Since the development of the coupling procedure
between the two-fluid model and the interface tracking model is the main goal of this work,
a very simple incompressible two-fluid model is chosen.

3.1. Two-Fluid Model Equations

The continuity and momentum equations for the system of incompressible viscous fluids
used in the present model are [32]

∂ fk

∂t
+∇ · ( fkEuk) = 0, (9)

fkρk
∂ Euk

∂t
+ fkρk(Euk∇)Euk = fkρkEg− fk∇ p+ Ck(Eu1− Eu2)+ fk∇ · (µkD

¯k). (10)

The two-fluid system is described with two pairs of equations, (9) and (10), withk = l for
fluid 1 andk = 2 for fluid 2. Both fluids are regarded as two mixed phases that share the same
space and pressure and interact with the exchange of momentum (mass and energy transfer
are not taken into account in Eqs. (9) and (10)). At any location there is a pair of velocities and
volume fractionsf1 and f2. Both fluids share space in proportion to their volume fraction,
which satisfy the equationf1+ f2 = 1. The divergence free condition for the two-fluid
model is provided by summation of Eq. (9) fork = 1 and Eq. (9) fork = 2 for both fluids

∇( f1Eu1)+∇( f2Eu2) = 0. (11)

Since the volume fraction in the two-fluid model has a meaning similar to the color function
(3) in the VOF model, the same symbolf is used. The momentum Eq. (10) fork = 1
and Eq. (10) fork = 2 are coupled with the third term on the right-hand side which is the
inter-phase momentum exchange term due to a friction at the interface of the fluids. The
interfacial friction depends on the flow regime of the two-phase flow. The coefficientsC1

andC2 are given by [26]

C1 = −C2 = 1

8
cdρcai |Ev1− Ev2|, (12)
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whereρc is a density of the continuous fluid,at is a volumetric interfacial area, andcd is an
empirical coefficient, which depends on the local Reynolds number and the flow regime.

A simplified interface friction coefficient, which is used in the present work is taken from
the work of Mat and Ilegbusi [32]

C1 = −C2 = cdρ̄ f1 f2, (13)

wherecd = 20 is an empirical constant and ¯ρ = f1ρ1+ f2ρ2 is the mixture density. The
correlation (13) is applicable for laminar flows and small velocities and does not include
the interfacial area variableai . More advanced two-fluid models use special correlations or
even a special transport equation forai [34, 41], since it is a very important parameter for
the calculation of all interface exchange terms. These models forai can be included without
any essential change to the coupling model.

The two-fluid model is not so severely limited with the nodalization density as is the
interface tracking model. Due to the averaged equations and corresponding closure rela-
tionships it can handle the phenomena on the smaller scale than the grid size. Of course
the numerical scheme and nodalization density still affect the accuracy of the two-fluid
model; however, the dominant contribution to the accuracy is the quality of the empirical
correlations [44]. The main source of the uncertainty of the two-fluid models comes from
the uncertainty of the correlations used to describe different flow regimes. Especially high
uncertainties are usually experienced during transitions between different flow regimes.

4. COUPLED MODEL

The advantage of coupling the VOF and the two-fluid model is that some flow regimes with
clear phase separation are not needed in the two-fluid model since they can be described
more accurately by the VOF model. Because correlations are needed only for dispersed
flows, coupling of these models improves the accuracy. On the other hand the coupled
model with the inclusion of the two-fluid model prevents the non-physical interpretation of
the dispersed flow by the VOF method.

The coupled model is designed to simulate the computational domain containing the
area where the fluids are mixed and calculated with the two-fluid model (lighter gray area
in Fig. 2) and the area where the fluids are separated and calculated with the VOF model
(black and white areas in Fig. 2). During the simulation the two-fluid model area may
change into the VOF area and vice versa. From the physical point of view the coupling
is not problematic since both models use the same parameters to describe fluid flow. The
advantage of the VOF model at coupling is that it uses the color function for tracking the
interface, which has the same meaning as a volume fraction variable in the two-fluid model.
The difference between the models is treatment of the fluid velocities. All the boundaries
of the cell, which is in the two-fluid model domain, have two velocities obtained from
Eq. (10)—one for each fluid. The remaining boundaries have only one velocity defined.
When the model of the cell is changed, the velocities are redefined in order to conserve the
volume flux. When the VOF model is changed to the two-fluid model, the velocities stay
the sameEutwo-fluid

1 = Eutwo-fluid
2 = EuVOF. But when the two-fluid model is changed to the VOF

model the velocity is calculated asEuVOF= f1Eutwo-fluid
1 + (1− f1)Eutwo-fluid

2 .
Both sets of equations ((1), (2) and (10), (11)) were discretized and solved with the same

numerical scheme due to the compatibility of model coupling. The numerical technique
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FIG. 2. Coupling of two-fluid and VOF area.

following the basic ideas of Rudman [39] was used to solve the time dependent incom-
pressible Navier–Stokes equations on a staggered grid. The first-order algorithm for the
time integration based on the projection method is used. The lower accuracy of the tempo-
ral integration is partially compensated for with the shorter time step, which did not exceed
0.1 fraction of the CFL time step. The Helmholtz equation for the pressure correction is
solved with the biconjugate gradient method [16]. The second-order central differencing is
used for spatial discretization of the convection terms with a proper amount of the upwind
discretization, which reduces the numerical oscillations but does not reduce the accuracy
order of the scheme.

The difference between the models is also the treatment of the volume fraction advection
Eqs. (6) and (9). Equations (6) and (9) are in the same discretization form

f n+1
i, j = f n

i, j +
1t

1x

(
HXi−1/2, j − HXi+1/2, j

)+ 1t

1x

(
HYi, j−1/2− HYi, j+1/2

)
. (14)

In Eq. (14)HXi+1/2, j denotes the flux of volume fractionf across the right edge of the cell
(i, j ) andHYi, j+1/2 denotes the flux off across the upper edge of the cell(i, j ). Calculation
of the flux H on the cell boundary depends on the cell, which is oriented upwind with the
respect to the velocity. If the upwind cell is calculated with the VOF model, then the VOF
advection algorithm is used (Fig. 3a); otherwise the two-fluid model is used to calculate the
flux HXi+1/2, j by the flux corrected transport algorithm [39] (Fig. 3b).

FIG. 3. Flux at coupling of two-fluid and VOF area. (a) Flux calculated by VOF model. (b) Flux calculated
by “two-fluid” model.
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5. SWITCH BETWEEN THE VOF AND THE TWO-FLUID MODEL

After the update of the volume fraction variablef , the VOF model or two-fluid model
has to be assigned to each cell. The cells, which contain only one fluid, are automatically
in the VOF domain. The essential problem of the coupling is a choice of a switch criterion.
According to this criterion, the model that will be used in mixed cells, cells that contain
both fluids, is chosen. The criterion must be based on the estimation of the local dispersion
of the interface in the cell.

In our work the dispersion is estimated with the same function (5) that was used for the
interface reconstruction. A dispersion function in the cell(i, j ) is defined as

γi, j = min(Gi, j (En)). (15)

The functionG defined by Eq. (5), which was originally developed for the calculation of
the interface segment orientationEn in the LVIRA interface reconstruction algorithm, turns
out to be useful also for the estimation of the local dispersion. A dispersion functionγ

checks the positions of the fluids in the 3× 3 block of cells with the respect to the best-
estimated interfaceEn. The perfect non-dispersed state in the 3× 3 block is achieved when
the fluids are separated with the interface of the linear shape. In such a case the value of the
dispersion function is zero; i.e.,γ = 0. If a part of the fluid is located on the “wrong” side
of the interface reconstucted by LVIRA algorithm, thenγ > 0.

In order to couple the two-fluid model and the VOF model, a constant parameterγ0 is
required, such that

if γi, j < γ0, the interface in the cell (i, j) is reconstructed and the VOF model is used

(16)

if γi, j > γ0, the fluids in the cell (i, j) are calculated with the two-fluid model.

The parameterγ0 is a free input parameter of the model coupling. Settingγ0 to the maximal
possible value of dispersionγ means that the whole transient is calculated with the VOF
method, whereas settingγ0 to zero means no interface reconstruction and the two-fluid
model is used the whole time on the whole domain.

5.1. Transition from the VOF to the Two-Fluid Model

In order to make the coupled model efficient the parameterγ0 has to be determined
properly. For that purpose it is necessary to estimate the upper bound of the dispersionγ

and to analyze the behavior ofγ in few typical two-phase systems, which are relevant to a
given problem. The two-fluid state in the 3× 3 block of cells can be very complex; therefore
the characterstics ofγ are determined numerically. Numerical tests with different physical
phenomena [10–12] and simple numerical calculations on the 3× 3 block have shown that
the upper bound for the dispersionγ is γ = 5. Figure 4 shows an example of a system with
the maximal dispersionγ = 5. The situation shown in Fig. 4 is rather unrealistic and never
appears during the simulations of physical phenomena [12].

In order to estimate maximal values ofγ in more realistic system, a homogenous mixture
with f (x, y, t) = fconst is considered first. The LVIRA interface reconstruction algorithm
can be applied for such a system, despite the fact, that the reconstructed interface has nothing
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FIG. 4. Dispersionγ = 5 for the non-homogeneously dispersed fluids.

to do with the real physical picture. However, the resulting functionγ defined by Eq. (15)
can be used as a measure for the dispersion. Figure 5 shows the dispersion functionγ of
the homogeneous mixture as a function of the volume fractionfconst. The dispersionγ
varies betweenγ = 1.5 and the maximal valueγ ∼= 2 at f ∼= 0.09 (see Fig. 6). It turns
out [12] that the maximal values ofγ in realistic simulations are seldom higher than 2.
Thus, in order to avoid the treatment of the homogenous mixture with the VOF model the
switch parameter has to be limited toγ0 < 1.5. However, the analysis of the dispersion in
non-homogenous dispersed states with chunks larger than the grid size is required to obtain
a more accurate value ofγ0.

Further analysis of the dispersionγ shows that it can be split into two parts:

I: Reconstruction of a single interface that cuts the 3× 3 block of cells into two parts
(see Fig. 1) results in a nonzero dispersionγ (15), when the interface is not linear in the
3× 3 block.

FIG. 5. Dispersionγ in the homogenous mixture as a function of volume fraction.
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FIG. 6. Maximal dispersionγ ∼= 2 of homogeneously dispersed fluids.

II: The second type of dispersion appears when two chunks (bubbles) of the dispersed
fluid approach a distance smaller than the grid size.

Both parts ofγ are analyzed in this section.

I. One of the most common topological shapes in two-phase flow is a bubble, which is
used for the examination of the part I of dispersionγ . Figure 7 shows a circular bubble with
a center in the pointS(x, y) and diameterd on a mesh with the grid spacingh. The maximal
dispersion calculated in any of the cells covered by the bubble interface is denoted asγM .
All relative positions of the bubble were checked numerically by moving the center of the
circle Swithin a single cell (Fig. 7, hatched area). Figure 8 shows the maximal dispersion
γM for different bubble positions. The result in Fig. 8 shows that usingγ as a measure of the
interface dispersion gives values, which depend on the position of the interface in the discrete
grid. An ideal parameter for measuring the dispersion should have a constant value for all

FIG. 7. Position of a circular bubble on a grid.
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FIG. 8. Maximal dispersionγM for circular bubble withd/h = 3.8.

positions of the bubble; however, it is probably impossible to construct such a parameter.
More detailed behavior of the dispersionγ is given in Fig. 9, whereγmin = min(γM(x, y))
andγmax= max(γM(x, y)) are given as functions of the bubble diameter to cell length ratio
d/h. A largerd/h ratio means more grid cells per bubble and results in smaller values of
the dispersionγ . Figure 9 shows a rapid increase ofγ values for diametersd less than
approximately 2h to 3h. This result shows that at least three grid cells per bubble diameter
are needed to capture its circular shape with some minimal accuracy and justifies the choice
of γ as a measure of the interface dispersion.

The result in Fig. 9 allows us to set a new threshold valueγ0: settingγ0 = γmaxdetermines
the minimal characteristic size of the bubble, which can be simulated with the VOF method.
For example, settingγ0 = 0.6 means that the bubble or a part of the surface with the
characteristic sized > 4h are treated with the VOF model. Smaller chunks with dispersion

FIG. 9. Dependence of the dispersion parameters from the bubble diameter.
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FIG. 10. Part IIa dispersion due to the nearby interfaces.

γmax>γ0 andγmin<γ0 might be still treated with the VOF model, but as such chunks move
over the discrete grid, the dispersion in some cell on the interface sooner or later exceeds
the parameter valueγ0 and switches the cell to the two-fluid model.

II. If two chunks of fluid approach each other at a distance comparable to the grid spacing,
γ will grow and the two-fluid model will be switched on. This type of dispersion is named
part II dispersion and is shown in Figs. 10 and 11. The original volume fraction is signed
with gray color and the reconstructed interface is presented with the thick line. The hatched
area covers the mesh cells, which contribute to the dispersion in the center cellγi, j . Due
to the linear interfaces there is no part I dispersion in Figs. 10 and 11, but only the part II
dispersion due to the presence of the nearby interface appears. There are two kinds of part
II dispersion:

IIa: Nearby interface enlarges theγ value, but does not disturb the reconstruction (Fig. 10).
IIb: Nearby interface is so close that the reconstruction fails (Fig. 11).

FIG. 11. Part IIb dispersion–reconstruction error due to the LVIRA failure.
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FIG. 12. Homogenous distribution of bubbles withd/h = 3.

The analysis of the dispersion due to the interface contact is needed to determine the
relation between the thresholdγ0 and the failed reconstruction. The VOF model should not
treat the state, where the reconstruction failure appears. Due to the numerous combinations
of states, where two interfaces come into the contact in the 3× 3 block of cells, the part II
dispersion analysis was performed statistically.

The dispersionγ from Eq. (15) cannot distinguish the dispersion cases IIa and IIb. The
reconstruction error IIb can only be detected by comparison with the exact solution. Thus
the part II dispersion was analyzed in the homogenous mixture of constant diameter bubbles
shown in Fig. 12. For that purpose the following expression based on the volume fraction
difference is used to measure the reconstruction error

δ = 1

V1

∫
V

( fexact− frec)
2 dV. (17)

The reconstruction error is denoted withδ, fexact is the exact volume fraction function
that is known in advance,frec is the approximation of the original state obtained with the
LVIRA reconstruction algorithm,V is the computational domain, andV1 =

∫
V fexactdV

is the volume of the dispersed phase used as a normalization factor.δ = 0 means that
the reconstruction is absolutely correct.δ > 0 is caused by a linear reconstruction of the
curved interface and/or failed reconstruction of the interface that corresponds to the part IIb
dispersion. The expression (17) compares particular cells without their local surrounding
(unlike dispersion (15)); therefore it does not detect the part IIa dispersion due to the nearby
interface.

In order to compare the dispersionγ and reconstruction errorδ, the average dispersion
is defined as

γ̄ =
∑

i

∑
j γi, j

N
. (18)

It is calculated on the whole domain, whereN is a number of the cells, which contain both
fluids.
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FIG. 13. Comparison of dispersion and reconstruction error atd/h = 3.

The comparison of the average dispersion ¯γ and the reconstruction errorδ can distinguish
dispersion parts IIa and IIb. Figure 13 comparesδ andγ̄ for the state of the uniform bubble
mixture as a function of the bubble density—a/h ratio at a constantd/h ratio. The constant
values of the functions ¯γ andδ at largea/h ratios (part A in Fig. 13) are due to the linear
approximations of the curved interfaces, which depend only on the size of the bubbles (d/h
ratio). In part B the dispersion ¯γ is enlarged due to the presence of the nearby interface but
the reconstruction does not fail yet (example in Fig. 10), since reconstruction errorδ is not
enlarged. The part C in Fig. 13 is the area where the LVIRA reconstruction algorithm fails
(example in Fig. 11).

The goal of this procedure is to estimate of the reconstruction error IIb with the dispersion
function γ and to impose additional constraints on the threshold parameterγ0. The area
whereγ is larger than the threshold valueγ0 is in the two-fluid model domain and in that
case the interface is not reconstructed. When calculating the reconstruction errorδ in the
coupled model that area is excluded from theδ:

δ(γ0) = 1

V1

∫
Vγ<γ0

( fexact− frec)
2 dV. (19)

Figure 14 shows the dependence ofδ(γ0) on thea/h ratio at a constant bubble diameter
d/h = 3 for the system shown in Fig. 12. The smallerγ0 parameter reduces the recon-
struction errorδ(γ0) since a larger portion of the area with failed interface is excluded from
the integration domain in Eq. (19). If the interfaces of the structures are so close that the
reconstruction fails, that area should be detected by the dispersion criterion and excluded
from the integration (19). Figure 14 shows that for the case of uniform bubble mixture at
d/h = 3,γ0 should not exceed the number of approximatelyγ0 ≈ 0.8. For larger values of
γ0, the areas with failed interface reconstruction can be erroneously treated with the VOF
method. In general this assumption defines theγrec parameter, which in the caseγ0 = γrec

excludes the area with failed reconstruction. In that case the reconstruction errorδ(γrec)

(Fig. 14) does not increase when thea/h ratio is decreased. Calculations shown in Fig. 14
were repeated for differentd/h ratios andγrec as a function of the bubble diameterd/h was
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FIG. 14. Reconstruction error for different values of switch parameterγ0 atd/h = 3.

obtained. It is presented in Fig. 15. According to theγrec in Fig. 15, settingγ0.0.4 ensures
that almost every cell with the reconstruction error of type IIb switches to the two-fluid
model. On the basis of the numerical experiments, a larger valueγ0 = 0.6 was chosen in
this work. That allows some reconstruction error for the chunks larger than approximately
d/h > 6. This choice is justified by the physical picture of the phenomena: when two such
large chunks approach it is often more sensible and accurate to keep the simulation with
the VOF method and allow some reconstruction error at merging, than switching to the less
accurate two-fluid model, which cannot improve the prediction of the merging process.

5.2. Transition from the Two-Fluid to the VOF Model

Stratification of mixed fluids is the reverse process of the dispersion. The transition
from the VOF to the two-fluid model depends on the interface position and distortion. The

FIG. 15. Dependence of theγrec parameter from the bubble diameter.
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FIG. 16. Setting interface at the stratification process.

reverse process is more complex since the more accurate VOF model has to be activated
from the results of the less accurate two-fluid model. Additional empirical correlations may
be required in some two-fluid models to describe such a transition. Besides the volume
fractions, these correlations may include also other variables such as a relative velocity
between fluids. It turns out that the dispersionγ with γ0 = 0.6 can be used as a simple
model of transition from the two-fluid to the VOF model. The results show that this is a
successful approximation in the presented case.

In the simplest case, when homogeneously dispersed fluids are separating in a vertical
direction, the coupled model sets up the interface horizontally as shown in Fig. 16. The upper
cells indicated with the lighter gray area contain smaller volume fraction of the heavier fluid
fa than the bottom cellsfb> fa. Despite the fact that the system is dispersed and treated
with the two-fluid model equations, the LVIRA algorithm is applied in each cell in order to
obtain the dispersionγ . The stratification appears in the cells withγ < γ0, where the VOF
model sets up the interface. In the simple case shown in Fig. 16, the interface is located in
all three middle cells due to the homogeneity of the problem in the horizontal direction. In
that case the relation between the valuesfa and fb, at which the interface is reestablished,
can be calculated from the simplified Eq. (15):

γ = 3 f 2
a + 3(1− fb)

2 < γ0⇒ fa <

(
γ0

3
− (1− fb)

2

)1/2

. (20)

Figure 17 shows the area of valuesfa and fb, where the interface is set up during the
stratification process for two different values ofγ0.

The necessary (but not sufficient) condition for the interface reestablishment isfa< 0.5
and fb> 0.5 (or fa> 0.5 and fb< 0.5); i.e., the interface can be established only
between the mixture of bubbles and the mixture of droplets. This is a consequence of the
physical/geometrical property that bubbles or/and droplets cannot exist if the continuous
fluid has a void fractionfcont< 0.5 [6]. In the case when volume fractionsfa, fb< 0.5, the
thresholdγ0 has to be smaller than the minimal possible dispersion to avoid the construction
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FIG. 17. Ratio of volume fractionsfa and fb at the point of interface setup.

of the interface

fa, fb < 0.5⇒ γ0 < min
(
3 f 2

a + 3(1− fb)
2
) = 0.75. (21)

Due to the symmetry of the void fractions, the same limit forγ0 is obtained forfb, fa > 0.5.
Values different from 0.75 are obtained for stratification in directions that are not parallel
to the discrete grid, or for a general stratification. However, the differences are small.

According to the results of the calculations summarized in Figs. 9, 15, and 17,γ0 = 0.6
was used as a value of the threshold parameterγ0. This value gives the following properties
of the coupled model:

(1) The chunks with the characteristic sized > 4h are treated with the VOF model. The
surface of the smaller chunks is at least partially assigned to the two-fluid model.

(2) The reconstruction error can appear in the VOF model when the chunks withd > 6h
approach each other.

(3) The stratification cannot be activated, when the continuous volume fraction isfcont <

0.6. Larger values ofγ0 allow smaller structures and therefore less accurate reconstruction
of the interface, while smaller values activate the two-fluid model in the areas where the
VOF model is still accurate.

6. RESULTS

For testing the coupled model two different examples were chosen. The idealized example
of the vortex flow [38] was used to show the behavior of the coupling algorithm with
advection and vorticity. The second simulation of the Rayleigh–Taylor instability shows
the capability of the coupled model at the physical problem.

6.1. Simulation of the Vortex Flow

For the overall estimation of the reconstruction error a test problem with the topological
changes of the interface is needed. The two-dimensional test problem, that besides the



794 C̆ERNE, PETELIN, AND TISELJ

topology change is also easy to implement, is the vortical flow test proposed by Rider and
Kothe [38]. Such test is representative of the interfacial flow in the real physical systems
such as the Rayleigh–Taylor instability where the sharp gradients in the fluid properties lead
the transient mechanisms. This test was used in [38] and [48] for estimating the accuracy
of the particular reconstruction algorithms and for comparison to the other reconstructing
algorithms.

The vortical flow test uses a fixed velocity field defined by the stream function:

9 = 1

π
sin2(πx) sin2(πy) (22)

The initial state of the fluid 1 is a circle with the radiusr = 0.07 whose center is located
at the pointS(0.5, 0.87) (Fig. 18). The vortical velocity defined by (22) deforms the circle
into the curved stripe. Figure 19 shows the state att = 1.6 calculated with the VOF model
on the 224× 224 grid. This is the maximal time, where the VOF method is capable of fully
resolving the state on the 224× 224 grid. Theoretically the fluid structure during the rotation
makes a spiral of the thin stripe, which stays continuous even in the case of infinite whirling
t →∞. During the simulation when the thickness of the fluid is close to the grid size the
numerical dispersion occurs. The original stripe decays into several parts comparable to the
grid size as shown in Fig. 20. Figure 21 shows the same state simulated with the coupled
model, where the volume fraction field is presented with gray casts. Since the two-fluid
model is involved in the calculation, the result is affected by numerical diffusion. However,
this solution is still closer to the real world than the solution in Fig. 20. To evaluate the
correctness of this particular simulation approach we compare the volume fractionsf with
the “correct” solution by

δnod(t) = 1

V1

∑
(i, j )∈V

( fgrid A(t)− fgrid B(t))
2
i, j , (23)

where fgrid A is a volume fraction field calculated on a coarser grid,fgrid B is a volume
fraction calculated on a finer grid (Fig. 19) and interpolated on the coarser gridA, andV1 is
a volume of the fluid 1V1 =

∑
fgrid A. In our case the result on gridB = 224× 224 is used

FIG. 18. Initial state of the vortex flow test.
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FIG. 19. Solution of the vortex flow test att = 1.6 calculated on 224× 224 grid with the VOF model.

as a “correct” solution. In Fig. 22 theδ(t) for different mesh density and different models are
compared. The errorδ(t) is close to zero till the numerical dispersion occurs. On the mesh
28× 28 that happens att = 0.75 and on 56× 56 att = 1.2. After that the numerical surface
tension enlarges the error of the VOF model simulation, while the numerical diffusion affects
the result of the coupled (two-fluid) model. The change ofδ(t) is more rapid at the VOF

FIG. 20. Solution of the vortex flow test att = 1.6 calculated on 56× 56 grid with the VOF model.
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FIG. 21. Solution of the vortex flow test att = 1.6 calculated on 56× 56 grid with the coupled model.

model since the numerical surface tension disperses the fluids in a relatively short time
interval. On the other hand the numerical diffusion of the two-fluid model enlarges the error
more continuously.

A better numerical scheme would improve the results of the two-fluid and the coupled
models; however, it cannot avoid the numerical surface tension effect.

6.2. Simulation of the Rayleigh–Taylor Instability

The only true evaluation of the coupled model is a comparison to the corresponding
experiment. A comparison of results obtained with the coupled model and the real experi-
mental data is possible only partially: like the numerical methods, which are designed for
the simulations of the dispersed or stratified flow, the experiments are also specialized for

FIG. 22. Time development ofδ(t) for the vortex flow test fromt = 0 to t = 2.
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the examination of a particular flow type. Among the basic two-phase flow phenomena such
as the Kelvin–Helmholtz instability [35] and the bubble stability [43], the Rayleigh–Taylor
instability turns out to be the most suitable for the assessment of the coupled model, since
during the transient the two-phase flow changes from stratified to dispersed and vice versa.
Besides that, the Rayleigh–Taylor instability has been examined with numerous calcula-
tions and serves as a kind of benchmark test for novelties in the two-phase flow modeling.
A similar work to our study has been performed by Glimm and co-authors, where the mix-
ing zone at Rayleigh–Taylor instability was examined [18]. That study combined the front
tracking method with the statistical model [17] to handle the late nonlinear and chaotic stage
of the Rayleigh–Taylor instability. In our work, the numerical simulations with different
grid densities were performed to point out the capability of the coupled model to handle the
dispersion problem with some limited accuracy even on a coarse grid.

In the initial state of the phenomenon, the heavier fluidρ1 = 3 lies above the lighter
oneρ2 = 1 in a channel with the width 1 and height 5. The sinusoidal disturbance of the
interface with the amplitude 0.002 is increased due to gravity accelerationg = 10. Both
fluids have the same kinematic viscosityv1 = v2 = 10−2. All quantities mentioned above
are nondimensional.

Figures 23 and 24 show the VOF simulation performed with different grid densities.
The heavier fluid is marked with balck and the lighter fluid is white. Figure 23 shows that
the VOF method successfully resolves the instability on the grid 48× 240 or denser until
t ≈ 2. Further development of the phenomenon mixes the fluids to the dispersed state,

FIG. 23. State of the Rayleigh–Taylor instability at timet = 2.0 simulated with the pure VOF method.
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FIG. 24. State of the Rayleigh–Taylor instability at time andt = 8.0 with the pure VOF method.

because there is no force like a surface tension, which would limit the dispersion. A denser
and denser grid is needed to resolve the continuation of the transient. For example, the
dispersed state like the one att ≈ 8 in Fig. 24 shows a different distribution of fluids for
every nodalization. Such a state is far beyond the capabilities of the 96× 480 mesh and our
computer hardware.

The grid dependence is investigated in the same way as Eq. (23), as in the vortical flow
test. Figure 25 shows the temporal development of theδnod(t) function for several pairs of
grids. In the initial phase of the transient higher resolution gives more accurate results (lower
δnod) since the reconstruction errors appear later. However, after a certain time interval, when
the fluids are well mixed, all VOF simulations end with unacceptable reconstruction errors.
The VOF method numerically disperses the fluids on small chunks, whose size depends on
grid density—denser nodalization produces smaller chunks. Their motion is significantly
affected by the reconstruction error and is not physical. “Numerical” chunks on a denser
grid moves slower and therefore the volume fraction distribution andδnod(t) significantly
depends on the grid density at the sedimentation part of the transient.

Figure 26 shows one of the initial stages simulated with the coupled model using different
grid densities. The black and white areas denote the position of the heavier and lighter fluid,
respectively, while the two-fluid mixture is presented with gray casts. Larger volume fraction
of the heavier fluid (largerf ) is presented with darker cast. The finer grid is capable of
simulating smaller structures before the two-fluid model is activated. Therefore at higher
resolution a smaller area is calculated with the two-fluid model (gray area in Fig. 26). The
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FIG. 25. Convergence of VOF model.

two-fluid model is first activated on the part of the interface with the smallest characteristic
size (gray area in Fig. 26 at finest resolution). After that it is spread around due to the further
fluid motion and also due to the numerical diffusion, which affects the volume fraction field
in the two-fluid model.

FIG. 26. Grid dependence of the coupled model showed on the state att = 2.0.
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FIG. 27. Time development of the instability simulated with the coupled model on 48× 240 grid.

Figure 27 shows the time development of the instability simulated with the coupled
model. At the initial stages of the transient the VOF model is used. Once the two-fluid
model is activated, it is spread all over the calculation domain due to the vortices, which
appear during the transient. In the final stages of the transient, mixing of the fluids is replaced
by the stratification process, which leads to the reverse process—construction of the new
interface and activation of the VOF model between the lighter and the heavier fluid. Mixing
and stratification processes are described by the two-fluid model and depend mainly on the
empirical constant for the interfacial frictioncd.

The interfacial friction constantcd should be evaluated in order to describe the real
physical picture as close as possible. Since the correct solution of the problem is not known
and there is a lack of experiments, which would give appropriate data, the evaluation
appeared to be a rather difficult task. Therefore the simulation of the Rayleigh–Taylor
instability with the pure VOF model was used as a reference solution to determinecd.
Although this bulk solution is not accurate, it is used for comparison with the coupled
model. Since the simulation with the pure VOF model is grid dependent, only the result on
the 48× 240 mesh density is used for the valuation of the interfacial friction, which is set
to cd = 40 to match the bulk solution as close as possible.

The characteristics of the coupled model are showed similarly as pure VOF model in
Fig. 25 by comparing the volume fraction distributions of different resolutions with the
Eq. (23). Figure 28 showsδnod(t) of the coupled model for several pairs of grids. Theδnod

stays low when the same model is used on both grids (VOF model at the beginning and
two-fluid model at the end of the simulation). The peakδnod occurs at switching from VOF
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FIG. 28. Convergence of the coupled model.

to two-fluid model. The switch is grid dependent and on denser resolution it turns on later.
The peak inδnod(t) describes the part of the transient when the two-fluid model on the
coarser grid has already been switched on, while the VOF model still works on the finer
grid.

For the initial part of the transient(t < 2) denser grids give lowerδnod(t) because the
coupled model uses the VOF model, which is capable of simulating that part and is not
affected by the reconstruction error. Later (t > 5), when the fluids disperse,δnod(t) is much
smaller than that in the VOF model (Fig. 25) for all grid densities. The distribution of
the volume fraction in the second part of the transient(t > 5) is driven by the two-fluid
model and depends mainly on the interfacial friction constant. On the other hand the vol-
ume fraction distribution in the pure VOF model appeared to depend also on the grid
density.

Since the parametersδnod(t) of the coupled model in Fig. 28 are approximately the same
asδnod(t) of the bulk solution and are much lower thanδnod(t) of the pure VOF model,
we confirmed the low grid dependence of the coupled model. With the inclusion of the
two-fluid model the coupled model becomes less grid dependent and is able to simulate
the problem on the coarsest grid more correctly than the pure VOF model on the highest
resolution.

7. CONCLUSIONS

The coupling of a simple VOF model and a two-fluid model was proposed and used for
the simulation of the two-phase problem with the dispersion of the interface. The interface
tracking algorithms such as the VOF method are useful for the simulation of the initial part
of the phenomenon. But further development of the instability is beyond the capabilities
of the interface tracking algorithms, which are limited by the grid size. The addition of
the two-fluid model to the model with the VOF method eliminated this problem and en-
abled the simulation of the whole phenomenon without the restriction imposed by the grid
density.

The coupled model exploits particular characteristics of both models: accurate simulation
of the interface with the VOF model and relatively small grid dependence of the two-fluid
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model in the dispersed flow. The switch parameter between the models is provided from
the function, which is already used by the LVIRA interface reconstruction algorithm in the
VOF method. Some simple numerical calculations have shown that the switch parameter
γ0 between 0.4 and 0.6 is the most proper value to change from the VOF to the two-fluid
model and vice versa. This value disables the interface reconstruction of the chunks with the
characteristic size close to the grid size and smaller and replaces it with the two-fluid model.
The switch between the models is based only on the position of the volume fractions, and can
be upgraded for more complex transients with other parameters and empirical correlations.

The coupled model gives results, which are grid dependent; i.e., a denser nodalization
does not result in a grid independent solution, but it gives a better approximation. The
simulation of the coupled model with the lower nodalization gives qualitatively the same
result as on the higher resolution but with a larger error.

The vortex flow test and simulation of the whole transient of the Rayleigh–Taylor insta-
bility, until the fluids exchange their positions, has showed that the coupled model of the
VOF model and the two-fluid model enables a more realistic calculation of a wider range
of two-phase phenomena than the pure VOF model. Comparison of the coupled model with
experimental models is difficult since there are not many experiments investigating both
the interface tracking and the dispersion phenomena at the same time.
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